* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * http://www.gnu.org/copyleft/gpl.html * * @file * @ingroup DifferenceEngine */ /** * This diff implementation is mainly lifted from the LCS algorithm of the Eclipse project which * in turn is based on Myers' "An O(ND) difference algorithm and its variations" * (http://citeseer.ist.psu.edu/myers86ond.html) with range compression (see Wu et al.'s * "An O(NP) Sequence Comparison Algorithm"). * * This implementation supports an upper bound on the execution time. * * Complexity: O((M + N)D) worst case time, O(M + N + D^2) expected time, O(M + N) space * * @author Guy Van den Broeck * @ingroup DifferenceEngine */ class WikiDiff3 { // Input variables private $from; private $to; private $m; private $n; private $tooLong; private $powLimit; // State variables private $maxDifferences; private $lcsLengthCorrectedForHeuristic = false; // Output variables public $length; public $removed; public $added; public $heuristicUsed; function __construct( $tooLong = 2000000, $powLimit = 1.45 ) { $this->tooLong = $tooLong; $this->powLimit = $powLimit; } public function diff( /*array*/ $from, /*array*/ $to ) { // remember initial lengths $m = count( $from ); $n = count( $to ); $this->heuristicUsed = false; // output $removed = $m > 0 ? array_fill( 0, $m, true ) : array(); $added = $n > 0 ? array_fill( 0, $n, true ) : array(); // reduce the complexity for the next step (intentionally done twice) // remove common tokens at the start $i = 0; while ( $i < $m && $i < $n && $from[$i] === $to[$i] ) { $removed[$i] = $added[$i] = false; unset( $from[$i], $to[$i] ); ++$i; } // remove common tokens at the end $j = 1; while ( $i + $j <= $m && $i + $j <= $n && $from[$m - $j] === $to[$n - $j] ) { $removed[$m - $j] = $added[$n - $j] = false; unset( $from[$m - $j], $to[$n - $j] ); ++$j; } $this->from = $newFromIndex = $this->to = $newToIndex = array(); // remove tokens not in both sequences $shared = array(); foreach ( $from as $key ) { $shared[$key] = false; } foreach ( $to as $index => &$el ) { if ( array_key_exists( $el, $shared ) ) { // keep it $this->to[] = $el; $shared[$el] = true; $newToIndex[] = $index; } } foreach ( $from as $index => &$el ) { if ( $shared[$el] ) { // keep it $this->from[] = $el; $newFromIndex[] = $index; } } unset( $shared, $from, $to ); $this->m = count( $this->from ); $this->n = count( $this->to ); $this->removed = $this->m > 0 ? array_fill( 0, $this->m, true ) : array(); $this->added = $this->n > 0 ? array_fill( 0, $this->n, true ) : array(); if ( $this->m == 0 || $this->n == 0 ) { $this->length = 0; } else { $this->maxDifferences = ceil( ( $this->m + $this->n ) / 2.0 ); if ( $this->m * $this->n > $this->tooLong ) { // limit complexity to D^POW_LIMIT for long sequences $this->maxDifferences = floor( pow( $this->maxDifferences, $this->powLimit - 1.0 ) ); wfDebug( "Limiting max number of differences to $this->maxDifferences\n" ); } /* * The common prefixes and suffixes are always part of some LCS, include * them now to reduce our search space */ $max = min( $this->m, $this->n ); for ( $forwardBound = 0; $forwardBound < $max && $this->from[$forwardBound] === $this->to[$forwardBound]; ++$forwardBound ) { $this->removed[$forwardBound] = $this->added[$forwardBound] = false; } $backBoundL1 = $this->m - 1; $backBoundL2 = $this->n - 1; while ( $backBoundL1 >= $forwardBound && $backBoundL2 >= $forwardBound && $this->from[$backBoundL1] === $this->to[$backBoundL2] ) { $this->removed[$backBoundL1--] = $this->added[$backBoundL2--] = false; } $temp = array_fill( 0, $this->m + $this->n + 1, 0 ); $V = array( $temp, $temp ); $snake = array( 0, 0, 0 ); $this->length = $forwardBound + $this->m - $backBoundL1 - 1 + $this->lcs_rec( $forwardBound, $backBoundL1, $forwardBound, $backBoundL2, $V, $snake ); } $this->m = $m; $this->n = $n; $this->length += $i + $j - 1; foreach ( $this->removed as $key => &$removed_elem ) { if ( !$removed_elem ) { $removed[$newFromIndex[$key]] = false; } } foreach ( $this->added as $key => &$added_elem ) { if ( !$added_elem ) { $added[$newToIndex[$key]] = false; } } $this->removed = $removed; $this->added = $added; } function diff_range( $from_lines, $to_lines ) { // Diff and store locally $this->diff( $from_lines, $to_lines ); unset( $from_lines, $to_lines ); $ranges = array(); $xi = $yi = 0; while ( $xi < $this->m || $yi < $this->n ) { // Matching "snake". while ( $xi < $this->m && $yi < $this->n && !$this->removed[$xi] && !$this->added[$yi] ) { ++$xi; ++$yi; } // Find deletes & adds. $xstart = $xi; while ( $xi < $this->m && $this->removed[$xi] ) { ++$xi; } $ystart = $yi; while ( $yi < $this->n && $this->added[$yi] ) { ++$yi; } if ( $xi > $xstart || $yi > $ystart ) { $ranges[] = new RangeDifference( $xstart, $xi, $ystart, $yi ); } } return $ranges; } private function lcs_rec( $bottoml1, $topl1, $bottoml2, $topl2, &$V, &$snake ) { // check that both sequences are non-empty if ( $bottoml1 > $topl1 || $bottoml2 > $topl2 ) { return 0; } $d = $this->find_middle_snake( $bottoml1, $topl1, $bottoml2, $topl2, $V, $snake ); // need to store these so we don't lose them when they're // overwritten by the recursion $len = $snake[2]; $startx = $snake[0]; $starty = $snake[1]; // the middle snake is part of the LCS, store it for ( $i = 0; $i < $len; ++$i ) { $this->removed[$startx + $i] = $this->added[$starty + $i] = false; } if ( $d > 1 ) { return $len + $this->lcs_rec( $bottoml1, $startx - 1, $bottoml2, $starty - 1, $V, $snake ) + $this->lcs_rec( $startx + $len, $topl1, $starty + $len, $topl2, $V, $snake ); } elseif ( $d == 1 ) { /* * In this case the sequences differ by exactly 1 line. We have * already saved all the lines after the difference in the for loop * above, now we need to save all the lines before the difference. */ $max = min( $startx - $bottoml1, $starty - $bottoml2 ); for ( $i = 0; $i < $max; ++$i ) { $this->removed[$bottoml1 + $i] = $this->added[$bottoml2 + $i] = false; } return $max + $len; } return $len; } private function find_middle_snake( $bottoml1, $topl1, $bottoml2, $topl2, &$V, &$snake ) { $from = &$this->from; $to = &$this->to; $V0 = &$V[0]; $V1 = &$V[1]; $snake0 = &$snake[0]; $snake1 = &$snake[1]; $snake2 = &$snake[2]; $bottoml1_min_1 = $bottoml1 -1; $bottoml2_min_1 = $bottoml2 -1; $N = $topl1 - $bottoml1_min_1; $M = $topl2 - $bottoml2_min_1; $delta = $N - $M; $maxabsx = $N + $bottoml1; $maxabsy = $M + $bottoml2; $limit = min( $this->maxDifferences, ceil( ( $N + $M ) / 2 ) ); // value_to_add_forward: a 0 or 1 that we add to the start // offset to make it odd/even if ( ( $M & 1 ) == 1 ) { $value_to_add_forward = 1; } else { $value_to_add_forward = 0; } if ( ( $N & 1 ) == 1 ) { $value_to_add_backward = 1; } else { $value_to_add_backward = 0; } $start_forward = -$M; $end_forward = $N; $start_backward = -$N; $end_backward = $M; $limit_min_1 = $limit - 1; $limit_plus_1 = $limit + 1; $V0[$limit_plus_1] = 0; $V1[$limit_min_1] = $N; $limit = min( $this->maxDifferences, ceil( ( $N + $M ) / 2 ) ); if ( ( $delta & 1 ) == 1 ) { for ( $d = 0; $d <= $limit; ++$d ) { $start_diag = max( $value_to_add_forward + $start_forward, -$d ); $end_diag = min( $end_forward, $d ); $value_to_add_forward = 1 - $value_to_add_forward; // compute forward furthest reaching paths for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) { if ( $k == -$d || ( $k < $d && $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k] ) ) { $x = $V0[$limit_plus_1 + $k]; } else { $x = $V0[$limit_min_1 + $k] + 1; } $absx = $snake0 = $x + $bottoml1; $absy = $snake1 = $x - $k + $bottoml2; while ( $absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy] ) { ++$absx; ++$absy; } $x = $absx -$bottoml1; $snake2 = $absx -$snake0; $V0[$limit + $k] = $x; if ( $k >= $delta - $d + 1 && $k <= $delta + $d - 1 && $x >= $V1[$limit + $k - $delta] ) { return 2 * $d - 1; } // check to see if we can cut down the diagonal range if ( $x >= $N && $end_forward > $k - 1 ) { $end_forward = $k - 1; } elseif ( $absy - $bottoml2 >= $M ) { $start_forward = $k + 1; $value_to_add_forward = 0; } } $start_diag = max( $value_to_add_backward + $start_backward, -$d ); $end_diag = min( $end_backward, $d ); $value_to_add_backward = 1 - $value_to_add_backward; // compute backward furthest reaching paths for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) { if ( $k == $d || ( $k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k] ) ) { $x = $V1[$limit_min_1 + $k]; } else { $x = $V1[$limit_plus_1 + $k] - 1; } $y = $x - $k - $delta; $snake2 = 0; while ( $x > 0 && $y > 0 && $from[$x + $bottoml1_min_1] === $to[$y + $bottoml2_min_1] ) { --$x; --$y; ++$snake2; } $V1[$limit + $k] = $x; // check to see if we can cut down our diagonal range if ( $x <= 0 ) { $start_backward = $k + 1; $value_to_add_backward = 0; } elseif ( $y <= 0 && $end_backward > $k - 1 ) { $end_backward = $k - 1; } } } } else { for ( $d = 0; $d <= $limit; ++$d ) { $start_diag = max( $value_to_add_forward + $start_forward, -$d ); $end_diag = min( $end_forward, $d ); $value_to_add_forward = 1 - $value_to_add_forward; // compute forward furthest reaching paths for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) { if ( $k == -$d || ( $k < $d && $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k] ) ) { $x = $V0[$limit_plus_1 + $k]; } else { $x = $V0[$limit_min_1 + $k] + 1; } $absx = $snake0 = $x + $bottoml1; $absy = $snake1 = $x - $k + $bottoml2; while ( $absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy] ) { ++$absx; ++$absy; } $x = $absx -$bottoml1; $snake2 = $absx -$snake0; $V0[$limit + $k] = $x; // check to see if we can cut down the diagonal range if ( $x >= $N && $end_forward > $k - 1 ) { $end_forward = $k - 1; } elseif ( $absy -$bottoml2 >= $M ) { $start_forward = $k + 1; $value_to_add_forward = 0; } } $start_diag = max( $value_to_add_backward + $start_backward, -$d ); $end_diag = min( $end_backward, $d ); $value_to_add_backward = 1 - $value_to_add_backward; // compute backward furthest reaching paths for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) { if ( $k == $d || ( $k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k] ) ) { $x = $V1[$limit_min_1 + $k]; } else { $x = $V1[$limit_plus_1 + $k] - 1; } $y = $x - $k - $delta; $snake2 = 0; while ( $x > 0 && $y > 0 && $from[$x + $bottoml1_min_1] === $to[$y + $bottoml2_min_1] ) { --$x; --$y; ++$snake2; } $V1[$limit + $k] = $x; if ( $k >= -$delta - $d && $k <= $d - $delta && $x <= $V0[$limit + $k + $delta] ) { $snake0 = $bottoml1 + $x; $snake1 = $bottoml2 + $y; return 2 * $d; } // check to see if we can cut down our diagonal range if ( $x <= 0 ) { $start_backward = $k + 1; $value_to_add_backward = 0; } elseif ( $y <= 0 && $end_backward > $k - 1 ) { $end_backward = $k - 1; } } } } /* * computing the true LCS is too expensive, instead find the diagonal * with the most progress and pretend a midle snake of length 0 occurs * there. */ $most_progress = self::findMostProgress( $M, $N, $limit, $V ); $snake0 = $bottoml1 + $most_progress[0]; $snake1 = $bottoml2 + $most_progress[1]; $snake2 = 0; wfDebug( "Computing the LCS is too expensive. Using a heuristic.\n" ); $this->heuristicUsed = true; return 5; /* * HACK: since we didn't really finish the LCS computation * we don't really know the length of the SES. We don't do * anything with the result anyway, unless it's <=1. We know * for a fact SES > 1 so 5 is as good a number as any to * return here */ } private static function findMostProgress( $M, $N, $limit, $V ) { $delta = $N - $M; if ( ( $M & 1 ) == ( $limit & 1 ) ) { $forward_start_diag = max( -$M, -$limit ); } else { $forward_start_diag = max( 1 - $M, -$limit ); } $forward_end_diag = min( $N, $limit ); if ( ( $N & 1 ) == ( $limit & 1 ) ) { $backward_start_diag = max( -$N, -$limit ); } else { $backward_start_diag = max( 1 - $N, -$limit ); } $backward_end_diag = -min( $M, $limit ); $temp = array( 0, 0, 0 ); $max_progress = array_fill( 0, ceil( max( $forward_end_diag - $forward_start_diag, $backward_end_diag - $backward_start_diag ) / 2 ), $temp ); $num_progress = 0; // the 1st entry is current, it is initialized // with 0s // first search the forward diagonals for ( $k = $forward_start_diag; $k <= $forward_end_diag; $k += 2 ) { $x = $V[0][$limit + $k]; $y = $x - $k; if ( $x > $N || $y > $M ) { continue; } $progress = $x + $y; if ( $progress > $max_progress[0][2] ) { $num_progress = 0; $max_progress[0][0] = $x; $max_progress[0][1] = $y; $max_progress[0][2] = $progress; } elseif ( $progress == $max_progress[0][2] ) { ++$num_progress; $max_progress[$num_progress][0] = $x; $max_progress[$num_progress][1] = $y; $max_progress[$num_progress][2] = $progress; } } $max_progress_forward = true; // initially the maximum // progress is in the forward // direction // now search the backward diagonals for ( $k = $backward_start_diag; $k <= $backward_end_diag; $k += 2 ) { $x = $V[1][$limit + $k]; $y = $x - $k - $delta; if ( $x < 0 || $y < 0 ) { continue; } $progress = $N - $x + $M - $y; if ( $progress > $max_progress[0][2] ) { $num_progress = 0; $max_progress_forward = false; $max_progress[0][0] = $x; $max_progress[0][1] = $y; $max_progress[0][2] = $progress; } elseif ( $progress == $max_progress[0][2] && !$max_progress_forward ) { ++$num_progress; $max_progress[$num_progress][0] = $x; $max_progress[$num_progress][1] = $y; $max_progress[$num_progress][2] = $progress; } } // return the middle diagonal with maximal progress. return $max_progress[(int)floor( $num_progress / 2 )]; } /** * @return mixed */ public function getLcsLength() { if ( $this->heuristicUsed && !$this->lcsLengthCorrectedForHeuristic ) { $this->lcsLengthCorrectedForHeuristic = true; $this->length = $this->m -array_sum( $this->added ); } return $this->length; } } /** * Alternative representation of a set of changes, by the index * ranges that are changed. * * @ingroup DifferenceEngine */ class RangeDifference { public $leftstart; public $leftend; public $leftlength; public $rightstart; public $rightend; public $rightlength; function __construct( $leftstart, $leftend, $rightstart, $rightend ) { $this->leftstart = $leftstart; $this->leftend = $leftend; $this->leftlength = $leftend - $leftstart; $this->rightstart = $rightstart; $this->rightend = $rightend; $this->rightlength = $rightend - $rightstart; } }