# http://www.mediawiki.org/ # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. # http://www.gnu.org/copyleft/gpl.html /** * @defgroup UtfNormal UtfNormal */ /** */ require_once dirname(__FILE__).'/UtfNormalUtil.php'; global $utfCombiningClass, $utfCanonicalComp, $utfCanonicalDecomp; $utfCombiningClass = NULL; $utfCanonicalComp = NULL; $utfCanonicalDecomp = NULL; # Load compatibility decompositions on demand if they are needed. global $utfCompatibilityDecomp; $utfCompatibilityDecomp = NULL; /** * For using the ICU wrapper */ define( 'UNORM_NONE', 1 ); define( 'UNORM_NFD', 2 ); define( 'UNORM_NFKD', 3 ); define( 'UNORM_NFC', 4 ); define( 'UNORM_DEFAULT', UNORM_NFC ); define( 'UNORM_NFKC', 5 ); define( 'UNORM_FCD', 6 ); define( 'NORMALIZE_ICU', function_exists( 'utf8_normalize' ) ); /** * Unicode normalization routines for working with UTF-8 strings. * Currently assumes that input strings are valid UTF-8! * * Not as fast as I'd like, but should be usable for most purposes. * UtfNormal::toNFC() will bail early if given ASCII text or text * it can quickly deterimine is already normalized. * * All functions can be called static. * * See description of forms at http://www.unicode.org/reports/tr15/ * * @ingroup UtfNormal */ class UtfNormal { /** * The ultimate convenience function! Clean up invalid UTF-8 sequences, * and convert to normal form C, canonical composition. * * Fast return for pure ASCII strings; some lesser optimizations for * strings containing only known-good characters. Not as fast as toNFC(). * * @param $string String: a UTF-8 string * @return string a clean, shiny, normalized UTF-8 string */ static function cleanUp( $string ) { if( NORMALIZE_ICU ) { # We exclude a few chars that ICU would not. $string = preg_replace( '/[\x00-\x08\x0b\x0c\x0e-\x1f]/', UTF8_REPLACEMENT, $string ); $string = str_replace( UTF8_FFFE, UTF8_REPLACEMENT, $string ); $string = str_replace( UTF8_FFFF, UTF8_REPLACEMENT, $string ); # UnicodeString constructor fails if the string ends with a # head byte. Add a junk char at the end, we'll strip it off. return rtrim( utf8_normalize( $string . "\x01", UNORM_NFC ), "\x01" ); } elseif( UtfNormal::quickIsNFCVerify( $string ) ) { # Side effect -- $string has had UTF-8 errors cleaned up. return $string; } else { return UtfNormal::NFC( $string ); } } /** * Convert a UTF-8 string to normal form C, canonical composition. * Fast return for pure ASCII strings; some lesser optimizations for * strings containing only known-good characters. * * @param $string String: a valid UTF-8 string. Input is not validated. * @return string a UTF-8 string in normal form C */ static function toNFC( $string ) { if( NORMALIZE_ICU ) return utf8_normalize( $string, UNORM_NFC ); elseif( UtfNormal::quickIsNFC( $string ) ) return $string; else return UtfNormal::NFC( $string ); } /** * Convert a UTF-8 string to normal form D, canonical decomposition. * Fast return for pure ASCII strings. * * @param $string String: a valid UTF-8 string. Input is not validated. * @return string a UTF-8 string in normal form D */ static function toNFD( $string ) { if( NORMALIZE_ICU ) return utf8_normalize( $string, UNORM_NFD ); elseif( preg_match( '/[\x80-\xff]/', $string ) ) return UtfNormal::NFD( $string ); else return $string; } /** * Convert a UTF-8 string to normal form KC, compatibility composition. * This may cause irreversible information loss, use judiciously. * Fast return for pure ASCII strings. * * @param $string String: a valid UTF-8 string. Input is not validated. * @return string a UTF-8 string in normal form KC */ static function toNFKC( $string ) { if( NORMALIZE_ICU ) return utf8_normalize( $string, UNORM_NFKC ); elseif( preg_match( '/[\x80-\xff]/', $string ) ) return UtfNormal::NFKC( $string ); else return $string; } /** * Convert a UTF-8 string to normal form KD, compatibility decomposition. * This may cause irreversible information loss, use judiciously. * Fast return for pure ASCII strings. * * @param $string String: a valid UTF-8 string. Input is not validated. * @return string a UTF-8 string in normal form KD */ static function toNFKD( $string ) { if( NORMALIZE_ICU ) return utf8_normalize( $string, UNORM_NFKD ); elseif( preg_match( '/[\x80-\xff]/', $string ) ) return UtfNormal::NFKD( $string ); else return $string; } /** * Load the basic composition data if necessary * @private */ static function loadData() { global $utfCombiningClass; if( !isset( $utfCombiningClass ) ) { require_once( dirname(__FILE__) . '/UtfNormalData.inc' ); } } /** * Returns true if the string is _definitely_ in NFC. * Returns false if not or uncertain. * @param $string String: a valid UTF-8 string. Input is not validated. * @return bool */ static function quickIsNFC( $string ) { # ASCII is always valid NFC! # If it's pure ASCII, let it through. if( !preg_match( '/[\x80-\xff]/', $string ) ) return true; UtfNormal::loadData(); global $utfCheckNFC, $utfCombiningClass; $len = strlen( $string ); for( $i = 0; $i < $len; $i++ ) { $c = $string{$i}; $n = ord( $c ); if( $n < 0x80 ) { continue; } elseif( $n >= 0xf0 ) { $c = substr( $string, $i, 4 ); $i += 3; } elseif( $n >= 0xe0 ) { $c = substr( $string, $i, 3 ); $i += 2; } elseif( $n >= 0xc0 ) { $c = substr( $string, $i, 2 ); $i++; } if( isset( $utfCheckNFC[$c] ) ) { # If it's NO or MAYBE, bail and do the slow check. return false; } if( isset( $utfCombiningClass[$c] ) ) { # Combining character? We might have to do sorting, at least. return false; } } return true; } /** * Returns true if the string is _definitely_ in NFC. * Returns false if not or uncertain. * @param $string String: a UTF-8 string, altered on output to be valid UTF-8 safe for XML. */ static function quickIsNFCVerify( &$string ) { # Screen out some characters that eg won't be allowed in XML $string = preg_replace( '/[\x00-\x08\x0b\x0c\x0e-\x1f]/', UTF8_REPLACEMENT, $string ); # ASCII is always valid NFC! # If we're only ever given plain ASCII, we can avoid the overhead # of initializing the decomposition tables by skipping out early. if( !preg_match( '/[\x80-\xff]/', $string ) ) return true; static $checkit = null, $tailBytes = null, $utfCheckOrCombining = null; if( !isset( $checkit ) ) { # Load/build some scary lookup tables... UtfNormal::loadData(); global $utfCheckNFC, $utfCombiningClass; $utfCheckOrCombining = array_merge( $utfCheckNFC, $utfCombiningClass ); # Head bytes for sequences which we should do further validity checks $checkit = array_flip( array_map( 'chr', array( 0xc0, 0xc1, 0xe0, 0xed, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff ) ) ); # Each UTF-8 head byte is followed by a certain # number of tail bytes. $tailBytes = array(); for( $n = 0; $n < 256; $n++ ) { if( $n < 0xc0 ) { $remaining = 0; } elseif( $n < 0xe0 ) { $remaining = 1; } elseif( $n < 0xf0 ) { $remaining = 2; } elseif( $n < 0xf8 ) { $remaining = 3; } elseif( $n < 0xfc ) { $remaining = 4; } elseif( $n < 0xfe ) { $remaining = 5; } else { $remaining = 0; } $tailBytes[chr($n)] = $remaining; } } # Chop the text into pure-ASCII and non-ASCII areas; # large ASCII parts can be handled much more quickly. # Don't chop up Unicode areas for punctuation, though, # that wastes energy. $matches = array(); preg_match_all( '/([\x00-\x7f]+|[\x80-\xff][\x00-\x40\x5b-\x5f\x7b-\xff]*)/', $string, $matches ); $looksNormal = true; $base = 0; $replace = array(); foreach( $matches[1] as $str ) { $chunk = strlen( $str ); if( $str{0} < "\x80" ) { # ASCII chunk: guaranteed to be valid UTF-8 # and in normal form C, so skip over it. $base += $chunk; continue; } # We'll have to examine the chunk byte by byte to ensure # that it consists of valid UTF-8 sequences, and to see # if any of them might not be normalized. # # Since PHP is not the fastest language on earth, some of # this code is a little ugly with inner loop optimizations. $head = ''; $len = $chunk + 1; # Counting down is faster. I'm *so* sorry. for( $i = -1; --$len; ) { if( $remaining = $tailBytes[$c = $str{++$i}] ) { # UTF-8 head byte! $sequence = $head = $c; do { # Look for the defined number of tail bytes... if( --$len && ( $c = $str{++$i} ) >= "\x80" && $c < "\xc0" ) { # Legal tail bytes are nice. $sequence .= $c; } else { if( 0 == $len ) { # Premature end of string! # Drop a replacement character into output to # represent the invalid UTF-8 sequence. $replace[] = array( UTF8_REPLACEMENT, $base + $i + 1 - strlen( $sequence ), strlen( $sequence ) ); break 2; } else { # Illegal tail byte; abandon the sequence. $replace[] = array( UTF8_REPLACEMENT, $base + $i - strlen( $sequence ), strlen( $sequence ) ); # Back up and reprocess this byte; it may itself # be a legal ASCII or UTF-8 sequence head. --$i; ++$len; continue 2; } } } while( --$remaining ); if( isset( $checkit[$head] ) ) { # Do some more detailed validity checks, for # invalid characters and illegal sequences. if( $head == "\xed" ) { # 0xed is relatively frequent in Korean, which # abuts the surrogate area, so we're doing # this check separately to speed things up. if( $sequence >= UTF8_SURROGATE_FIRST ) { # Surrogates are legal only in UTF-16 code. # They are totally forbidden here in UTF-8 # utopia. $replace[] = array( UTF8_REPLACEMENT, $base + $i + 1 - strlen( $sequence ), strlen( $sequence ) ); $head = ''; continue; } } else { # Slower, but rarer checks... $n = ord( $head ); if( # "Overlong sequences" are those that are syntactically # correct but use more UTF-8 bytes than are necessary to # encode a character. Naïve string comparisons can be # tricked into failing to see a match for an ASCII # character, for instance, which can be a security hole # if blacklist checks are being used. ($n < 0xc2 && $sequence <= UTF8_OVERLONG_A) || ($n == 0xe0 && $sequence <= UTF8_OVERLONG_B) || ($n == 0xf0 && $sequence <= UTF8_OVERLONG_C) # U+FFFE and U+FFFF are explicitly forbidden in Unicode. || ($n == 0xef && ($sequence == UTF8_FFFE) || ($sequence == UTF8_FFFF) ) # Unicode has been limited to 21 bits; longer # sequences are not allowed. || ($n >= 0xf0 && $sequence > UTF8_MAX) ) { $replace[] = array( UTF8_REPLACEMENT, $base + $i + 1 - strlen( $sequence ), strlen( $sequence ) ); $head = ''; continue; } } } if( isset( $utfCheckOrCombining[$sequence] ) ) { # If it's NO or MAYBE, we'll have to rip # the string apart and put it back together. # That's going to be mighty slow. $looksNormal = false; } # The sequence is legal! $head = ''; } elseif( $c < "\x80" ) { # ASCII byte. $head = ''; } elseif( $c < "\xc0" ) { # Illegal tail bytes if( $head == '' ) { # Out of the blue! $replace[] = array( UTF8_REPLACEMENT, $base + $i, 1 ); } else { # Don't add if we're continuing a broken sequence; # we already put a replacement character when we looked # at the broken sequence. $replace[] = array( '', $base + $i, 1 ); } } else { # Miscellaneous freaks. $replace[] = array( UTF8_REPLACEMENT, $base + $i, 1 ); $head = ''; } } $base += $chunk; } if( count( $replace ) ) { # There were illegal UTF-8 sequences we need to fix up. $out = ''; $last = 0; foreach( $replace as $rep ) { list( $replacement, $start, $length ) = $rep; if( $last < $start ) { $out .= substr( $string, $last, $start - $last ); } $out .= $replacement; $last = $start + $length; } if( $last < strlen( $string ) ) { $out .= substr( $string, $last ); } $string = $out; } return $looksNormal; } # These take a string and run the normalization on them, without # checking for validity or any optimization etc. Input must be # VALID UTF-8! /** * @param $string string * @return string * @private */ static function NFC( $string ) { return UtfNormal::fastCompose( UtfNormal::NFD( $string ) ); } /** * @param $string string * @return string * @private */ static function NFD( $string ) { UtfNormal::loadData(); global $utfCanonicalDecomp; return UtfNormal::fastCombiningSort( UtfNormal::fastDecompose( $string, $utfCanonicalDecomp ) ); } /** * @param $string string * @return string * @private */ static function NFKC( $string ) { return UtfNormal::fastCompose( UtfNormal::NFKD( $string ) ); } /** * @param $string string * @return string * @private */ static function NFKD( $string ) { global $utfCompatibilityDecomp; if( !isset( $utfCompatibilityDecomp ) ) { require_once( 'UtfNormalDataK.inc' ); } return UtfNormal::fastCombiningSort( UtfNormal::fastDecompose( $string, $utfCompatibilityDecomp ) ); } /** * Perform decomposition of a UTF-8 string into either D or KD form * (depending on which decomposition map is passed to us). * Input is assumed to be *valid* UTF-8. Invalid code will break. * @private * @param $string String: valid UTF-8 string * @param $map Array: hash of expanded decomposition map * @return string a UTF-8 string decomposed, not yet normalized (needs sorting) */ static function fastDecompose( $string, $map ) { UtfNormal::loadData(); $len = strlen( $string ); $out = ''; for( $i = 0; $i < $len; $i++ ) { $c = $string{$i}; $n = ord( $c ); if( $n < 0x80 ) { # ASCII chars never decompose # THEY ARE IMMORTAL $out .= $c; continue; } elseif( $n >= 0xf0 ) { $c = substr( $string, $i, 4 ); $i += 3; } elseif( $n >= 0xe0 ) { $c = substr( $string, $i, 3 ); $i += 2; } elseif( $n >= 0xc0 ) { $c = substr( $string, $i, 2 ); $i++; } if( isset( $map[$c] ) ) { $out .= $map[$c]; continue; } else { if( $c >= UTF8_HANGUL_FIRST && $c <= UTF8_HANGUL_LAST ) { # Decompose a hangul syllable into jamo; # hardcoded for three-byte UTF-8 sequence. # A lookup table would be slightly faster, # but adds a lot of memory & disk needs. # $index = ( (ord( $c{0} ) & 0x0f) << 12 | (ord( $c{1} ) & 0x3f) << 6 | (ord( $c{2} ) & 0x3f) ) - UNICODE_HANGUL_FIRST; $l = intval( $index / UNICODE_HANGUL_NCOUNT ); $v = intval( ($index % UNICODE_HANGUL_NCOUNT) / UNICODE_HANGUL_TCOUNT); $t = $index % UNICODE_HANGUL_TCOUNT; $out .= "\xe1\x84" . chr( 0x80 + $l ) . "\xe1\x85" . chr( 0xa1 + $v ); if( $t >= 25 ) { $out .= "\xe1\x87" . chr( 0x80 + $t - 25 ); } elseif( $t ) { $out .= "\xe1\x86" . chr( 0xa7 + $t ); } continue; } } $out .= $c; } return $out; } /** * Sorts combining characters into canonical order. This is the * final step in creating decomposed normal forms D and KD. * @private * @param $string String: a valid, decomposed UTF-8 string. Input is not validated. * @return string a UTF-8 string with combining characters sorted in canonical order */ static function fastCombiningSort( $string ) { UtfNormal::loadData(); global $utfCombiningClass; $len = strlen( $string ); $out = ''; $combiners = array(); $lastClass = -1; for( $i = 0; $i < $len; $i++ ) { $c = $string{$i}; $n = ord( $c ); if( $n >= 0x80 ) { if( $n >= 0xf0 ) { $c = substr( $string, $i, 4 ); $i += 3; } elseif( $n >= 0xe0 ) { $c = substr( $string, $i, 3 ); $i += 2; } elseif( $n >= 0xc0 ) { $c = substr( $string, $i, 2 ); $i++; } if( isset( $utfCombiningClass[$c] ) ) { $lastClass = $utfCombiningClass[$c]; if( isset( $combiners[$lastClass] ) ) { $combiners[$lastClass] .= $c; } else { $combiners[$lastClass] = $c; } continue; } } if( $lastClass ) { ksort( $combiners ); $out .= implode( '', $combiners ); $combiners = array(); } $out .= $c; $lastClass = 0; } if( $lastClass ) { ksort( $combiners ); $out .= implode( '', $combiners ); } return $out; } /** * Produces canonically composed sequences, i.e. normal form C or KC. * * @private * @param $string String: a valid UTF-8 string in sorted normal form D or KD. Input is not validated. * @return string a UTF-8 string with canonical precomposed characters used where possible */ static function fastCompose( $string ) { UtfNormal::loadData(); global $utfCanonicalComp, $utfCombiningClass; $len = strlen( $string ); $out = ''; $lastClass = -1; $lastHangul = 0; $startChar = ''; $combining = ''; $x1 = ord(substr(UTF8_HANGUL_VBASE,0,1)); $x2 = ord(substr(UTF8_HANGUL_TEND,0,1)); for( $i = 0; $i < $len; $i++ ) { $c = $string{$i}; $n = ord( $c ); if( $n < 0x80 ) { # No combining characters here... $out .= $startChar; $out .= $combining; $startChar = $c; $combining = ''; $lastClass = 0; continue; } elseif( $n >= 0xf0 ) { $c = substr( $string, $i, 4 ); $i += 3; } elseif( $n >= 0xe0 ) { $c = substr( $string, $i, 3 ); $i += 2; } elseif( $n >= 0xc0 ) { $c = substr( $string, $i, 2 ); $i++; } $pair = $startChar . $c; if( $n > 0x80 ) { if( isset( $utfCombiningClass[$c] ) ) { # A combining char; see what we can do with it $class = $utfCombiningClass[$c]; if( !empty( $startChar ) && $lastClass < $class && $class > 0 && isset( $utfCanonicalComp[$pair] ) ) { $startChar = $utfCanonicalComp[$pair]; $class = 0; } else { $combining .= $c; } $lastClass = $class; $lastHangul = 0; continue; } } # New start char if( $lastClass == 0 ) { if( isset( $utfCanonicalComp[$pair] ) ) { $startChar = $utfCanonicalComp[$pair]; $lastHangul = 0; continue; } if( $n >= $x1 && $n <= $x2 ) { # WARNING: Hangul code is painfully slow. # I apologize for this ugly, ugly code; however # performance is even more teh suck if we call # out to nice clean functions. Lookup tables are # marginally faster, but require a lot of space. # if( $c >= UTF8_HANGUL_VBASE && $c <= UTF8_HANGUL_VEND && $startChar >= UTF8_HANGUL_LBASE && $startChar <= UTF8_HANGUL_LEND ) { # #$lIndex = utf8ToCodepoint( $startChar ) - UNICODE_HANGUL_LBASE; #$vIndex = utf8ToCodepoint( $c ) - UNICODE_HANGUL_VBASE; $lIndex = ord( $startChar{2} ) - 0x80; $vIndex = ord( $c{2} ) - 0xa1; $hangulPoint = UNICODE_HANGUL_FIRST + UNICODE_HANGUL_TCOUNT * (UNICODE_HANGUL_VCOUNT * $lIndex + $vIndex); # Hardcode the limited-range UTF-8 conversion: $startChar = chr( $hangulPoint >> 12 & 0x0f | 0xe0 ) . chr( $hangulPoint >> 6 & 0x3f | 0x80 ) . chr( $hangulPoint & 0x3f | 0x80 ); $lastHangul = 0; continue; } elseif( $c >= UTF8_HANGUL_TBASE && $c <= UTF8_HANGUL_TEND && $startChar >= UTF8_HANGUL_FIRST && $startChar <= UTF8_HANGUL_LAST && !$lastHangul ) { # $tIndex = utf8ToCodepoint( $c ) - UNICODE_HANGUL_TBASE; $tIndex = ord( $c{2} ) - 0xa7; if( $tIndex < 0 ) $tIndex = ord( $c{2} ) - 0x80 + (0x11c0 - 0x11a7); # Increment the code point by $tIndex, without # the function overhead of decoding and recoding UTF-8 # $tail = ord( $startChar{2} ) + $tIndex; if( $tail > 0xbf ) { $tail -= 0x40; $mid = ord( $startChar{1} ) + 1; if( $mid > 0xbf ) { $startChar{0} = chr( ord( $startChar{0} ) + 1 ); $mid -= 0x40; } $startChar{1} = chr( $mid ); } $startChar{2} = chr( $tail ); # If there's another jamo char after this, *don't* try to merge it. $lastHangul = 1; continue; } } } $out .= $startChar; $out .= $combining; $startChar = $c; $combining = ''; $lastClass = 0; $lastHangul = 0; } $out .= $startChar . $combining; return $out; } /** * This is just used for the benchmark, comparing how long it takes to * interate through a string without really doing anything of substance. * @param $string string * @return string */ static function placebo( $string ) { $len = strlen( $string ); $out = ''; for( $i = 0; $i < $len; $i++ ) { $out .= $string{$i}; } return $out; } }